Significance of αThr-349 in the Catalytic Sites of Escherichia coli ATP Synthase
نویسندگان
چکیده
This paper describes the role of α-subunit VISIT-DG sequence residue αThr-349 in the catalytic sites of Escherichia coli F1Fo ATP synthase. X-ray structures show the highly conserved αThr-349 in the proximity (2.68 Å) of the conserved phosphate binding residue βR182 in the phosphate binding subdomain. αT349A, -D, -Q, and -R mutations caused 90-100-fold losses of oxidative phosphorylation and reduced ATPase activity of F1Fo in membranes. Double mutation αT349R/βR182A was able to partially compensate for the absence of known phosphate binding residue βR182. Azide, fluoroaluminate, and fluoroscandium caused insignificant inhibition of αT349A, -D, and -Q mutants, slight inhibition of the αT349R mutant, partial inhibition of the αT349R/βR182A double mutant, and complete inhibition of the wild type. Whereas NBD-Cl (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole) inhibited wild-type ATPase and its αT349A, -D, -R, and -Q mutants essentially completely, βR182A ATPase and double mutant αT349A/βR182A were inhibited partially. Inhibition characteristics supported the conclusion that NBD-Cl reacts in βE (empty) catalytic sites, as shown previously by X-ray structure analysis. Phosphate protected against NBD-Cl inhibition in the wild type, αT349R, and double mutant αT349R/βR182A but not in αT349A, αT349D, or αT349Q. The results demonstrate that αThr-349 is a supplementary residue involved in phosphate binding and transition state stabilization in ATP synthase catalytic sites through its interaction with βR182.
منابع مشابه
Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase
Here we describe the role of charged amino acids at the catalytic sites of Escherichia coli ATP synthase. There are four positively charged and four negatively charged residues in the vicinity of of E. coli ATP synthase catalytic sites. Positive charges are contributed by three arginine and one lysine, while negative charges are contributed by two aspartic acid and two glutamic acid residues. R...
متن کاملThe Escherichia coli F1F0 ATP synthase displays biphasic synthesis kinetics.
The F1F0 proton-translocating ATPase/synthase is the primary generator of ATP in most organisms growing aerobically. Kinetic assays of ATP synthesis have been conducted using enzymes from mitochondria and chloroplasts. However, limited data on ATP synthesis by the model Escherichia coli enzyme are available, mostly because of the lack of an efficient and reproducible assay. We have developed an...
متن کاملModulation of charge in the phosphate binding site of Escherichia coli ATP synthase.
This paper presents a study of the role of positive charge in the P(i) binding site of Escherichia coli ATP synthase, the enzyme responsible for ATP-driven proton extrusion and ATP synthesis by oxidative phosphorylation. Arginine residues are known to occur with high propensity in P(i) binding sites of proteins generally and in the P(i) binding site of the betaE catalytic site of ATP synthase s...
متن کاملEffect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains
CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...
متن کاملIdentification of phosphate binding residues of Escherichia coli ATP synthase.
Four positively-charged residues, namely betaLys-155, betaArg-182, betaArg-246, and alphaArg-376 have been identified as Pi binding residues in Escherichia coli ATP synthase. They form a triangular Pi binding site in catalytic site betaE where substrate Pi initially binds for ATP synthesis in oxidative phosphorylation. Positive electrostatic charge in the vicinity of betaArg-246 is shown to be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 53 شماره
صفحات -
تاریخ انتشار 2014